

Cardiomyopathy: A heart starved of energy and choked with fibrosis

Shawn Prince, Senior Field Application Scientist, QIAGEN Bioinformatics

Sample to Insight

Analyzing heart development and heart disease datasets with OmicSoft and IPA bioinformatics solution.

QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

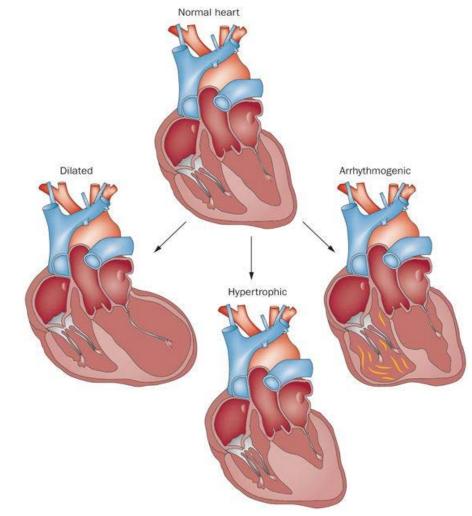
For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor.

Sample to Insight

- Exciting role interacting with, and enabling, a wide range of researchers, across different scientific disciplines, using QIAGEN's bioinformatics analysis software.
- Become an expert on QIAGEN'S bioinformatics analysis and interpretation software
- Deliver scientific software demonstrations and product trainings
- Focused on gene expression analysis, sequence variant analysis, pathway analysis, microbial metagenomics analysis
- □ Field-based (home office with travel) role
- Stop by at a break or see QIAGEN Careers (will be posted Wednesday)

- Why did I choose this topic
- What is Hypertrophic Cardiomyopathy
- How data was processed
- Insights and findings

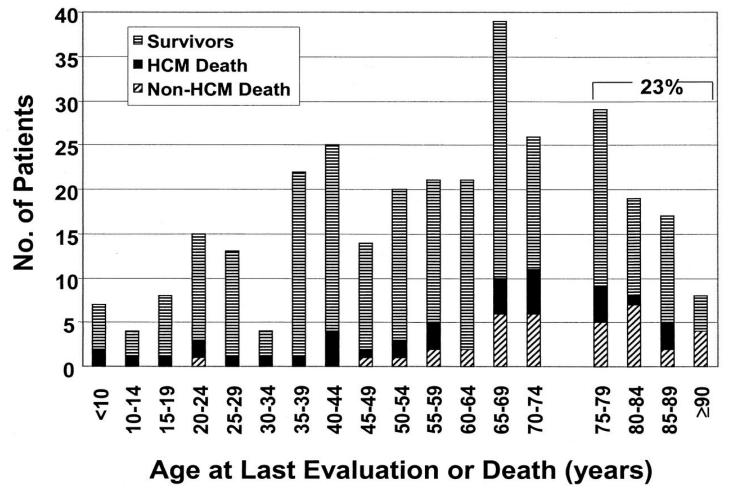
Why did I choose this project



www.shutterstock.com • 209147719

Hershberger, R. E. et al. Nat. Rev. Cardiol. 10, 531–547 (2013); published online 30 July 2013; doi:10.1038/nrcardio.2013.105

Medications


beta-blockers and calcium channel blockers relax the heart muscle

Implantable Cardioverter Defibrillators (ICD)

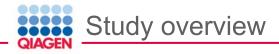
Procedures

- Septal Myectomy, Ethanol Ablation, Heart Transplant
- Lifestyle changes
- Fluid and sodium restrictions
- Exercise limitations
- Regular Follow-Up Visits
- Reducing the Risk of Infection

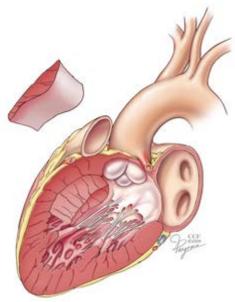
Survival statistics

Clinical course of hypertrophiccardiomyopathy with survival to advanced age Barry J Maron, Susan A Casey, Robert G Hauser and Dorothee M Aeppli

QIAGEN



• •		Array Studio V	10.0 (MasterServer=t	cp://www.omicland.c	com:443, User=shawn.p	rince@qiagen.com)			
alysis Server Land Browser									
Manage Analytics Download Tools Sha	re Help								
Select Land HumanDisease_B37 Dise	aseCategory (All)	··· for gse89714->Project	tName × 🐟 - 🤇	Grouping - DiseaseState	🛟 🔽 Close 🕶				
lumanDisease_B37 🙁 HumanDisease_B37/gsc1145	HumanDisease_837.65E1145.GPL	570.test1 HumanDisea	sse_837.G5289714.GPL1115	54.DESeq2.test1					
Select View 🙀 - 🙀 - 🙀 -	Sample Distribution								Legend Task
Sample Evoject	**************************************	k 🔁 🔹 1*1 🔹	1 Chart Auto Trellis					1	🗿 Copy Legend without border
								.6	Color by TissueCategory
P					DiseaseState				heart
🔆 Favorites									
Meta Data									
🛙 🍸 Data Availability									
Expression_Intensity_Probes[N=105835]									
Image: Big Methylation450_837[N=5367]									
Click to filter values									
Image: Big RnaSeq_Exon[N=9276]									
RnaSeq_ExonJunction[N=9276]									
RnaSeq_Fusion[N=9075]	đ								
RnaSeq_GeneBas[N=9276]	typertrophic cardiomyopathy								
False (0)	hypertrophic cardiomyopathy								
V True (5)	Ö								
-missing- (0) -miss									
RnaSeq_PairedEndFusion[N=5169]									
RnaSeq_raisectricit dashi[14=5105]									
Membership		11 V							
Tinical Data									
Y Sample Set									
SampleID									
		0	1	2	3	4	5	6	
	Selection Details	20330	100%	• • •				8 Rows, 1 Columns	
	Sample Details	strangers(f)	100.10				3		
	Project Details Clinical Details	Attribute		Value					
Action	Ciniical Details	ProjectName		G5E89714					
Rowse Selected Samples		Accession		GSE89714					
Create SampleSet		BioProject		and the second s	.nlm.nih.gov/bioproject/PRJNA	352990			
Clear Selection		Collection		CVMHuman					
Filter Selection		-		human hypertropi previously diagno	hic heart tissue samples were a sed with hypertrophic cardiom	obtained from patients ropathy, undergoing septal			
Career Dependence		Comment		myectomy surgery	y (n=5). Control samples were	obtained from normal heart		-	

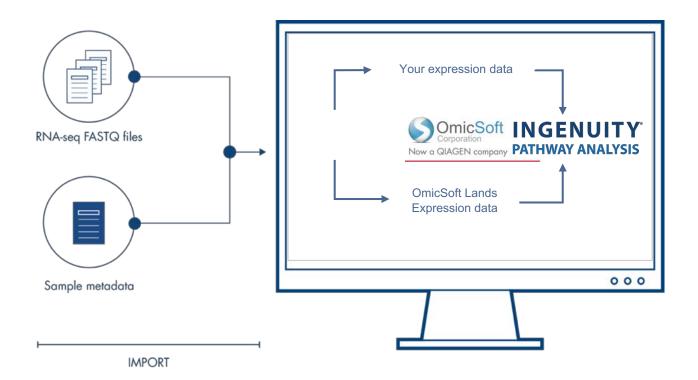

Sample to Insight

Series GSE89714	4 Query DataSets for GSE89714
Status	Public on Nov 10, 2016
Title	Differential gene expressions in the heart of hypertrophic cardiomyopathy patients
Organism	Homo sapiens
Experiment type	Expression profiling by high throughput sequencing
Summary	Differential gene expressions were constructed through expression profiling of a total of 20,127 genes in the heart tissue of hypertrophic cardiomyopathy patients, then 1799 significant differential genes were filtered based on the criteria ($p<0.05$ and fold change > 1.5), respectively.
Overall design	In the study presented here, human hypertrophic heart tissue samples were obtained from patients previously diagnosed with hypertrophic cardiomyopathy, undergoing septal myectomy surgery (n=5). Control samples were obtained from normal heart donor left ventricles (n=4). The heart tissues were collected and performed transcriptome analysis by RNA-sequencing. Compared to normal heart, 1799 significant differentially expressed genes (filtering criteria p<0.05, fold change>1.5) were identified 7-days or 28 days post-Ang II infusion.
Contributor(s)	Li Y, Guo H
Citation missing	Has this study been published? Please login to update or notify GEO.
Submission date	Nov 09, 2016
Last update date	Dec 11, 2018

Samples derived from septal myectomy surgery patients with HCM (n =5) Normal heart donor left ventricles (n =4)

During the septal myectomy procedure, the surgeon removes a small amount of the thickened septal wall to widen the outflow tract from the left ventricle to the aorta.

Process data in Omicsoft ArrayStudio

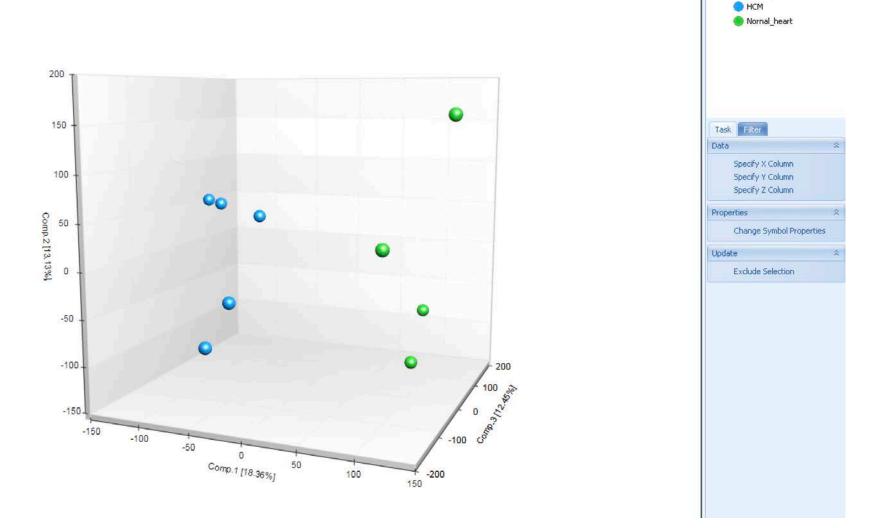

- Downloaded Sra data to run my own analysis
- Run RNA-seq Pipeline, calculated differential expression and called variants
- Exported variants in VCF for analysis in IVA
- Push differential expression results to IPA

Filtered variants in IVA and exported to IPA

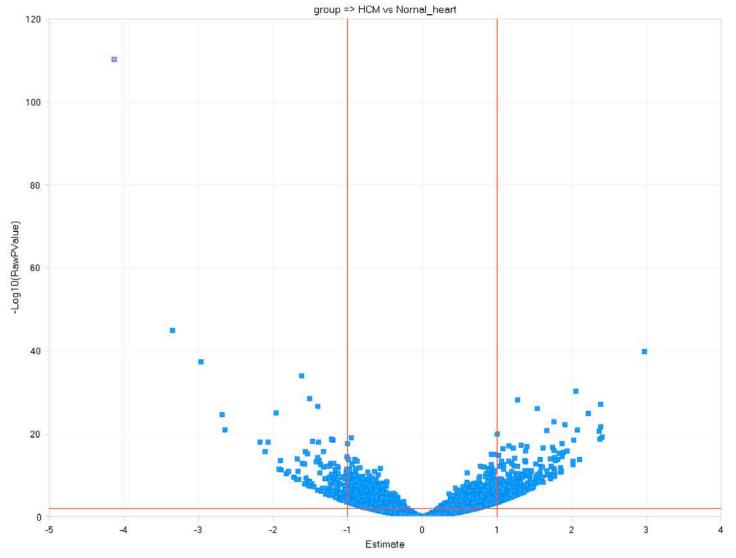
Analyzed differential expression and variant function in IPA

Integration Array Studio – IPA (FASTQ to insight)

Sample to Insight


Analyzing heart development and heart disease datasets with OmicSoft and IPA bioinformatics solution.

Quick QC of the mapping


	100%	8 1							
Metric	SRR5008356	SRR5008357	SRR5008358	SRR5008359	SRR5008360	SRR5008361	SRR5008362	SRR5008363	SRR5008364
Alignment_All	14198589	14249976	14472554	15080712	14924562	14260478	14178862	14067628	14146943
Alignment_HasDeletion	62793	60532	55439	60537	59643	70907	69510	53441	57231
Alignment_HasDeletionRate	0.0045	0.0043	0.0039	0.0041	0.0041	0.0051	0.0050	0.0039	0.0041
Alignment_HasInsertion	36000	34261	32532	35435	37977	35089	36956	34643	65698
Alignment_HasInsertionRate	0.0026	0.0024	0.0023	0.0024	0.0026	0.0025	0.0026	0.0025	0.0047
Alignment_HasIntron	1486927	1443755	1707154	1611527	1611029	1307640	1400778	1479106	1373519
Alignment_HasIntronRate	0.1064	0.1029	0.1195	0.1084	0.1096	0.0933	0.1002	0.1068	0.0988
Alignment_Mapped	13977496	14028527	14282164	14871984	14694303	14022185	13981293	13846493	13906775
Alignment_MappedRate	0.9844	0.9845	0.9868	0.9862	0.9846	0.9833	0.9861	0.9843	0.9830
Alignment_NM=?	0	0	0	0	0	0	0	0	0
Alignment_NM=?Rate	0	0	0	0	0	0	0	0	0

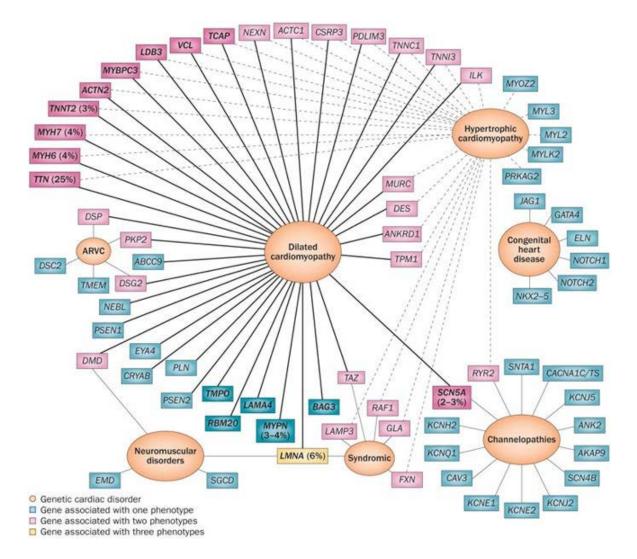
PCA Plots help determine differentiation of data

😑 Color by group

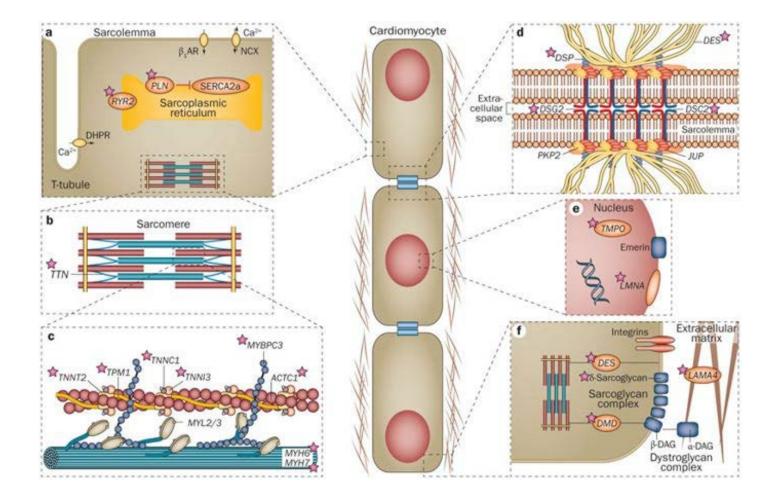
Volcano plot to determine if there is any significant genes

Sample to Insight

- Mapped reads were high and consistent
- PCA plot of HCM and NF hearts show that most samples within each group have similar expression patterns
- Volcano plot shows significant genes are differentially expressed
- Variants for each sample were called Annotation and filtering will be done in Ingenuity Variant analysis



Variants in the data


Variants	Genes		Edit Columns	Export Cre	eate List Sea	rch gene, chr, or dl	SNP 2	5 variants					
4231	1865		hr Position	Gene Region	Gene Symbol	Protein Variant	Variant Findings	Case Samples	Control Samples	Sample	Translation Impact	SIFT Functio	PolyPhe.
4		1	1 78392121	Exonic	NEXN	p.I107T, p.I171T	4				missense	Damaging	Benign
Confidence		Ø ()	1 78395055	Exonic	NEXN	p.P243T, p.P307			12121212	*****	missense	Tolerated	Probabl
3366	1655	+	1 201328372	Exonic	TNNT2	p.R216P, p.R245	28				missense	Tolerated	Possibly
-U			2 179407488	Exonic, Introni	TTN, TTN-AS	1 p.T23300A, p.T2					missense		Benign
Common Variants		Ø (1)	2 216240390	Exonic	FN1	p.N1799S, p.N18					missense		Benign
1053	647		5 78985833	Exonic	CMYA5	p.E35K	1				missense	Damaging	Benign
л.		3	7 128488022	Exonic	FLNC	p.R1494W	1				missense	Damaging	Possibly
	2002	-	10 21102870	Exonic, Introni		p.M782V					missense	Tolerated	Possibly
Predicted Deleteri	ous 192		10 69959174	Exonic, ncRN/	MYPN	p.P1112L, p.P81	30			-; -; -; -; -;	missense	Damaging	Probabl
	102		10 75142998	Exonic, Splice	ANXA7, RP11	p.L245F, p.L267				*****	missense	Damaging	Probabl
V			10 75849850	Exonic	VCL	p.R416W	1				missense	Damaging	Possibl
Genetic Analysis		I	10 88478529	Exonic	LDB3	p.V525I, p.V635I	6			*****	missense	Damaging	Benign
100	108	++	12 111352091	Exonic	MYL2	p.R44Q, p.R58Q	78			-; -; -; -; -;	missense	Tolerated	Probabl
0			14 23888715	Exonic, Promo	mir-208, MYH	7 p.R1277Q	15			*****	missense	Tolerated	Benign
Biological Context	í i		14 23896042	Exonic	MYH7	p.R663H	170				missense	Tolerated	Possibl
25	22	+	14 23901922	Exonic	MYH7	p.R143Q	53				missense	Damaging	Possibl
			15 44058182	Exonic	PDIA3	p.A273T				*****	missense	Tolerated	Benign
Recalculate wh	en filters chan	ige	47552386	Exonic	COL6A2	p.A994T	6		120121121122		missense	Tolerated	Benign
Add F	ilter		M 9145	Exonic	MT-ATP6	p.A207T	2	🚰			missense		
			M 11061	Exonic	MT-ND4	p.S101F	2	=			missense		
			M 12950	Exonic	MT-ND5	p.N205S	1	=			missense		
			M 13681	Exonic	MT-ND5	p.T449A	4	8			missense		
			M 13942	Exonic	MT-ND5	p.T536A	2	=			missense		
			M 15038	Exonic	MT-CYB	p.198V		=			missense		
			M 15363	Exonic	MT-CYB	p.N206S	1			44444	missense		

Hershberger, R. E. et al. Nat. Rev. Cardiol. 10, 531–547 (2013); published online 30 July 2013; doi:10.1038/nrcardio.2013.105

Hershberger, R. E. et al. Nat. Rev. Cardiol. 10, 531-547 (2013); published online 30 July 2013; doi:10.1038/nrcardio.2013.105

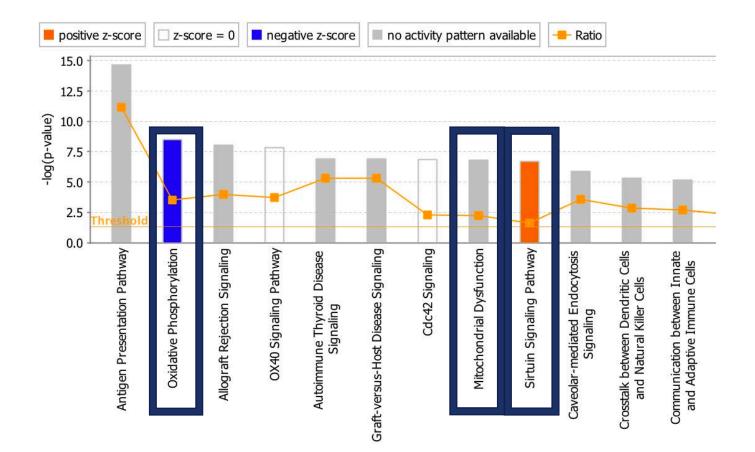
Variants were called in Arraystudio exported in VCF and uploaded to IVA

Analysis was setup as Case vs Control (as a way to control for experimental artifacts)

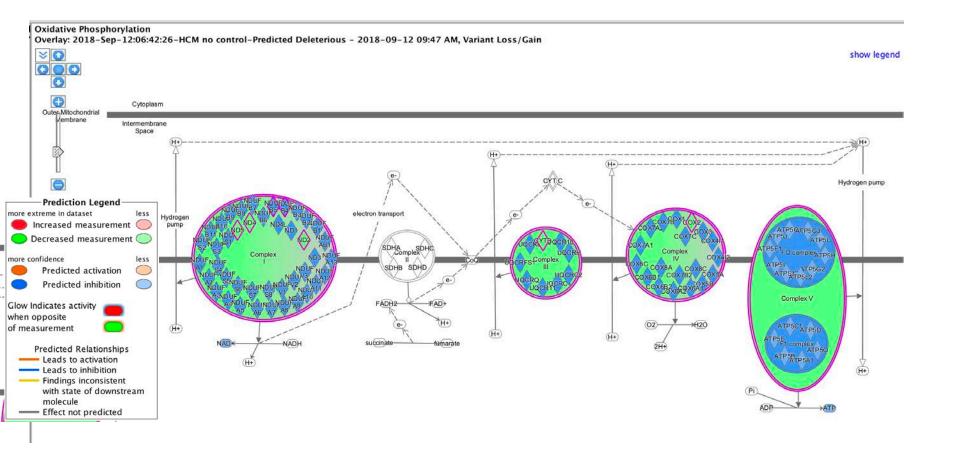
Variants were filtered for:

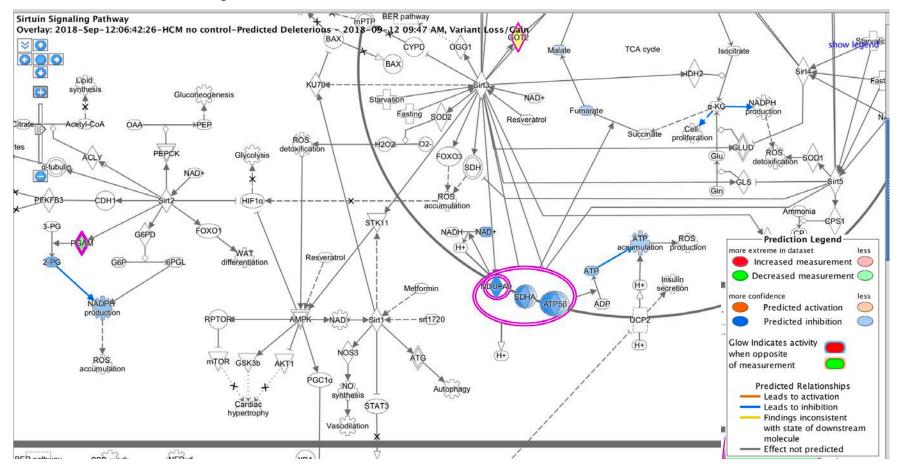
- Quality
- Population (remember its pretty common, use a 3% filter)
- removed Control variants
- predicted to be deleterious
- and is associated with HCM

Filter Settings	6		ounn	any vanants	Cones Oroups	acompiexes P	athways Process	es Diseases 0	401410W					
Variants	Genes		Edit	Columns	Export Cre	eate List Sea	rch gene, chr, or dl	SNP 2	5 variants					
4231	1865		Chr	Position	Gene Region	Gene Symbol	Protein Variant	Variant Findings	Case Samples	Control Samples	Sample	Translation Impact	SIFT Functio	PolyPhe
4			1	78392121	Exonic	NEXN	p.I107T, p.I171T	4				missense	Damaging	Benign
× Confidence		<i>E</i> ()	1	78395055	Exonic	NEXN	p.P243T, p.P307				*****	missense	Tolerated	Probably
3366	1655	+	1	201328372	Exonic	TNNT2	p.R216P, p.R245	28				missense	Tolerated	Possibly
Û			2	179407488	Exonic, Introni	TTN, TTN-AS	1 p.T23300A, p.T2					missense		Benign
× Common Variants			2	216240390	Exonic	FN1	p.N1799S, p.N18					missense		Benign
1053	647	++	5	78985833	Exonic	CMYA5	p.E35K	1				missense	Damaging	Benign
J			7	128488022	Exonic	FLNC	p.R1494W	1				missense	Damaging	Possibly
× Predicted Deleterio		月〇	10	21102870	Exonic, Introni	NEBL	p.M782V				*****	missense	Tolerated	Possibly
198	us 192		10	69959174	Exonic, ncRN/	MYPN	p.P1112L, p.P81	30			-; -; -; -; -;	missense	Damaging	Probably
Л			10	75142998	Exonic, Splice	ANXA7, RP11	p.L245F, p.L267				*****	missense	Damaging	Probably
V			10	75849850	Exonic	VCL	p.R416W	1				missense	Damaging	Possibly
× Genetic Analysis		E ()	10	88478529	Exonic	LDB3	p.V525I, p.V635	6			*****	missense	Damaging	Benign
100	108	++	12	111352091	Exonic	MYL2	p.R44Q, p.R58Q	78				missense	Tolerated	Probably
4			14	23888715	Exonic, Promo	mir-208, MYH	7 p.R1277Q	15				missense	Tolerated	Benign
× Biological Context		E (1)	14	23896042	Exonic	MYH7	p.R663H	170				missense	Tolerated	Possibly
25	22	+	14	23901922	Exonic	MYH7	p.R143Q	53			33333	missense	Damaging	Possibly
			15	44058182	Exonic	PDIA3	p.A273T				*****	missense	Tolerated	Benign
Recalculate whe	n filters cha	inge	21	47552386	Exonic	COL6A2	p.A994T	6		1 <u>110111111000</u>	*****	missense	Tolerated	Benign
Add Fil	ter		м	9145	Exonic	MT-ATP6	p.A207T	2	=			missense		
Construction of the second second			м	11061	Exonic	MT-ND4	p.S101F	2				missense		
			м	12950	Exonic	MT-ND5	p.N205S	1				missense		
			м	13681	Exonic	MT-ND5	p.T449A	4				missense		
			м	13942	Exonic	MT-ND5	p.T536A	2	=			missense		
			м	15038	Exonic	MT-CYB	p.198V		=			missense		
			м	15363	Exonic	MT-CYB	p.N206S	1	-=		33333	missense		


Filter Settings			Summ	ary variants	Genes Groups	Acomplexes Pr	Pathways Process	Jes Diseases (Jverview							Сору	Share Put
Variants	Genes		Edit	Columns	Export Cre	eate List Sear	irch gene, chr, or dl	I5SNP	100 variants								
4231	1865		Chr	. Position	Gene Region	Gene Symbol	Protein Variant	Variant Finding	Case Samples	Control Samples	Sample	. Translation Impact	SIFT Functio	PolyPhe	Regulatory Site	Regulator	dbSNP ID
\checkmark	8		1	47838652	Exonic, ncRNA	A CMPK1	p.N115S, p.N668	55 3			*****	-; missense	Tolerated	Benign			72553947
× Confidence		90	1	78392121	Exonic	NEXN	p.I107T, p.I171T	т 4				; missense	Damaging	Benign			372065024
3366	1655	-	1	78395055	Exonic	NEXN	p.P243T, p.P307	7			*****	-; missense	Tolerated	Probably	6		763586017
J	R		1	144882477	Exonic, Intron	ic CH17_472G2	3 p.L1181P, p.L124	24				-; missense	Damaging	Possibly I	1		
× Common Variants			1	156713640	Exonic, ncRNA	A HDGF	p.N142Y, p.N167	n			-; -; -; -; -	-; missense	Damaging	Benign			187134455
1053	647		1	167905028	Exonic, ncRN	A DCAF6, MPC2	2 p.D18N	39				-; missense	Tolerated	Benign	ENCODE TFB	S, CTCF, E2F6, GA	A 77188947
, I	6		1	184792432	Exonic, Prom	o FAM129A, RN	P.H285L					-; missense	Tolerated	Benign			80112693
× Predicted Deleteri		80	1	201328372	Exonic	TNNT2	p.R216P, p.R245	15 28				; missense	Tolerated	Possibly I	1		397516484
198	192	□ ①	1	203452346	Exonic	PRELP	p.L12F					; missense		Benign			200903022
			1	226033040	Exonic, Intron	ik EPHX1, RP11	1_ p.R454G		=-			; missense	Tolerated	Benign			
-			2	42578409	3'UTR, Exonic	c, COX7A2L	p.196V, p.199V		=-		*****	; missense	Tolerated	Benign			150597431
Genetic Analysis		E O	2	55200305	Exonic, ncRNA	A RTN4	p.R1189H, p.R19	15				; missense	Damaging	Possibly I	t		202245854
100	108	++	2	86364629	Exonic	PTCD3	p.S673R					-; missense	Damaging	Benign			79465176
V			2	99980878	Exonic	EIF5B	p.A428T	1			*****	; missense	Tolerated	Probably	/		
× Biological Context	t	B (1)	2	168074705	Exonic	XIRP2	p.P252S, p.P285	Æ				; missense	Tolerated	Benign			
25	22	+	2	168100903	Exonic, Introni	ic XIRP2	p.V1001I, p.V77	75 2			*****	; missense					74494873
			2	168103016	Exonic, Introni	ic XIRP2	p.R1483H, p.R1	1(3				-; missense					117183838
Recalculate who	ien filters ch	nange	2	168107351	Exonic, Introni	ic XIRP2	p.Y2928C, p.Y29	25 3				-; missense					3749003
Add F	Filter		2	173368930	3'UTR, Exonic	c, AC0938181, I	IT p.Q1074fs*10, p	p. 3				-; frameshift					1085307075, 20105
			2	174086202	Exonic, Intron	nic MAP3K20, MA	A p.D443del	1				-; in-frame					762805496
			2	179407488	Exonic, Intron	ic TTN, TTN-AS	1 p.T23300A, p.T2	2				; missense		Benign			
			2	216240390	Exonic	FN1	p.N1799S, p.N18	iE				; missense		Benign			
			3	69153993	3'UTR, Exonic	aRL6IP5	p.P67L					; missense					1043536154
			3	120315279	Exonic	NDUFB4	p.125V	52			*****	; missense	Tolerated	Benign	ENCODE TFB	S E2F1, GTF2B, H	A 375961470
			3	179336257	Exonic, Introni	ic NDUFB5	p.Y121H, p.Y133	33 1				; missense	Damaging	Probably			4147793
			4	48850452	Exonic	OCIAD1	p.P23L, p.P50L,					; missense	Damaging	Probably	1		
			4	83347711	Exonic, Introni	ic HNRNPDL	p.G247A, p.G36					-; missense	Damaging	Benign			200123403
			4	113568399			11 p.E231K, p.E238					-; missense	Tolerated	Benign			776408557
Sample Legend [show	N		4	119953186		Contraction of the second second	p.W1086R	1				* missense	Damaging	Prohably	A		78841086

Variants from the Genetic filter were uploaded and Core analysis run in IPA


- 100 or so variants
- Two themes emerge
- Canonical Pathways
- Disease and function



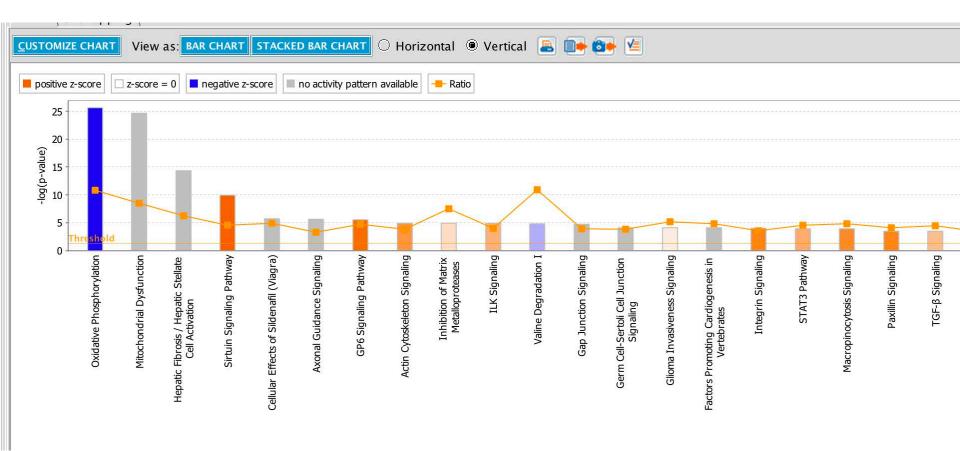
Oxidative Phosphorylation Pathway

Sirtuin Pathway


Disease and Function

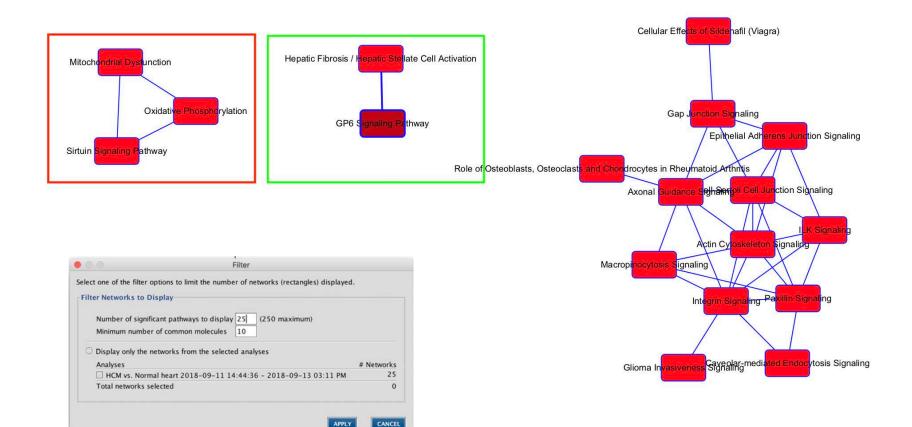
organismar injary and Abh	ormalities Skeletal and N	luscular Disorders	Hereditary Disorder	Neurological Disease	Organismal Deve	Tissue Devel	Cell Morph	Embryonic	Gastrointe.	. Endocrin
			╺┛						┠─┢─┼┑┶	
		المتباط	┍┛┝╌┥╌┥╴┙				ЕННШ			
			╊ <mark>╞╼╍╞╼┍┝╼┍┝┍</mark> ┥		Organ Morphology	Cellular Mov	Metabolic D	Cellula C	ellular Imm	uno Repr
	╘┤╻┋╸┍╴╴╴╴╴╴		<u>╶</u> ┠── ──────────────────────────────────	Skeletal and Muscul						╧┿╋
┨╌╏╼╏╼╏╴╏╴╏╴		┥┥┨╪╪╴						Inflam C	Connec Infl	am Rena
┋ <u></u> ┛┽┽┽┽┽┽		ancer			Cardiovascular S	Cellular Asse	Cellular Fu		╧┻╋	
┢╍ <mark>╴╴╴╴╴╴╴╴╴</mark>	┼┼┼┼┼┨──┤═ <mark>╞</mark> ╸		Cardiovascular Diseas					Dermato 9	5mall Resp.	. <u>Lip.</u>
┨┥╴╧╧	┟╷╷╷╷╷╴						Tissue Mor		╾┝┰╁┲┫╻┝═╛	
			The second se	Developmental Disor				Psychol C	onne Hem	. Mar La
╞╌╧╡┛┿╞╧╪╧╧		┝┥┥┥┥┥			Cell-To-Cell Signa	Organ Devel				
					Cell-To-Cell Signa	Organ Devel	Cell Death a		Org	Op., C.,
					Cell-To-Cell Signa	Organ Devel	Cell Death a	Nervous H	Org	Op., C.,
					Cell-To-Cell Signa	Organ Devel	Cell Death a		lemat	
TO MY PATHWAY ADD TO	My LIST ANNOTATION DISPLA	AS NETWORK			Cell-To-Cell Signa			Nervous H	lemat Cell	DN T
					Cell-To-Cell Signa		Cell Death a	Nervous H	lemat Cell	DN T
e are 10 unique molecule				Predicted Activation		p-1		Nervous H	lemat Cell	DN T
e are 10 unique molecule egories	s selected	tion 🔳 📐				р-1 2 <u>×</u> Мо	/alue 4.06E-22	Nervous H 2 - 3.70E-0	Iemat Cell 05 (p1 of 5)	DN T
e are 10 unique molecule egories editary Disorder,Organi	s selected Diseases or Functions Annota	tion 🔽 🔊	p-Value			р-\ 2 🗵 Мо АД	/alue 4.06E-22	Nervous H 2 - 3.70E-0 T × # M all 32 32	Iemat Cell 05 (p1 of 5)	DN T
e are 10 unique molecule egories editary Disorder,Organi etal and Muscular Disor	s selected Diseases or Functions Annota Hereditary myopathy	tion 🔽 🔥 4.06 1.94	p-Value X			p-\ e X Mo AD	Value 4.06E-22 lecules SSL1, AHNAK,	Nervous H 2 - 3.70E-0 all 32 all 14 14	Iemat Cell 05 (p1 of 5)	DN T
e are 10 unique molecule egories editary Disorder,Organi etal and Muscular Disor liovascular Disease,Her	s selected Diseases or Functions Annota Hereditary myopathy Caveolinopathy	tion 🔳 🗚 4.06 1.94 nyopathy 5.58	p-Value 🔀 5E-22 4E-14			p-\ e X Mo AD FLN	Value 4.06E-22 lecules SSL1, AHNAK,. SSL1, AHNAK,.	2 - 3.70E-0 (*) × # 1 all 32 32 all 14 14 all 10 10	Iemat Cell 05 (p1 of 5)	DN T
D TO MY PATHWAY ADD TO re are 10 unique molecule egories editary Disorder,Organi etal and Muscular Disor diovascular Disease,Her diovascular Disease,Her diovascular Disease,Her	s selected Diseases or Functions Annota Hereditary myopathy Caveolinopathy Familial hypertrophic cardion	tion 💌 🗚 4.06 1.94 nyopathy 5.58 1.08	p-Value 🔀 5E-22 4E-14 8E-12			p-\ e X Mo AD FLN +M	Value 4.06E-22 lecules SSL1,AHNAK,. SSL1,AHNAK,. IC,+MYH7,+	2 - 3.70E-0 T × # F all 32 32 all 14 14 all 10 10 all 6 6	Iemat Cell 05 (p1 of 5)	DN T
e are 10 unique molecule egories editary Disorder,Organi etal and Muscular Disor liovascular Disease,Her liovascular Disease,Her	s selected Diseases or Functions Annota Hereditary myopathy Caveolinopathy Familial hypertrophic cardion Dilated cardiomyopathy 1S	tion 4.06 1.94 nyopathy 5.58 1.08 nyopathy 1.17	p-Value 🔀 6E-22 4E-14 8E-12 8E-11			p-\ x Mo AD FLN +M FLN	/alue 4.06E-22 lecules SSL1, AHNAK, SSL1, AHNAK, IC, + MYH7, + YH7, + MYL2,	2 - 3.70E-0 (*) × # M all 32 32 all 14 14 all 10 10 all 6 6 all 9 9	Iemat Cell 05 (p1 of 5)	DN T
e are 10 unique molecule egories editary Disorder,Organi etal and Muscular Disor liovascular Disease,Her liovascular Disease,Her	s selected Diseases or Functions Annota Hereditary myopathy Caveolinopathy Familial hypertrophic cardion Dilated cardiomyopathy 1S Autosomal dominant cardion	tion 4.06 1.94 nyopathy 5.58 1.08 nyopathy 1.17 thy 2.17	p-Value 💌 1 6E-22 4E-14 8E-12 8E-11 7E-11			p-\ e X Mo AD AD FLN FLN FLN FLN	/alue 4.06E-22 lecules SSL1, AHNAK, SSL1, AHNAK, IC, + MYH7, + IC, + MYH7, +	2 - 3.70E-0 T × # P all 32 32 all 14 14 all 10 10 all 6 all 9 9. all 9	Iemat Cell 05 (p1 of 5)	DN T

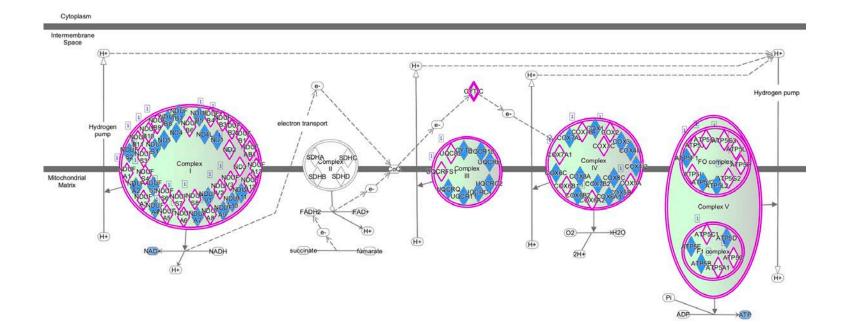
- Predicted decrease of Oxidative Phosphorylation
- Predicted activation of Sirtuin Pathway
- MT dysfunction
- Variants show enrichment of cardiovascular disease and hereditary disorder



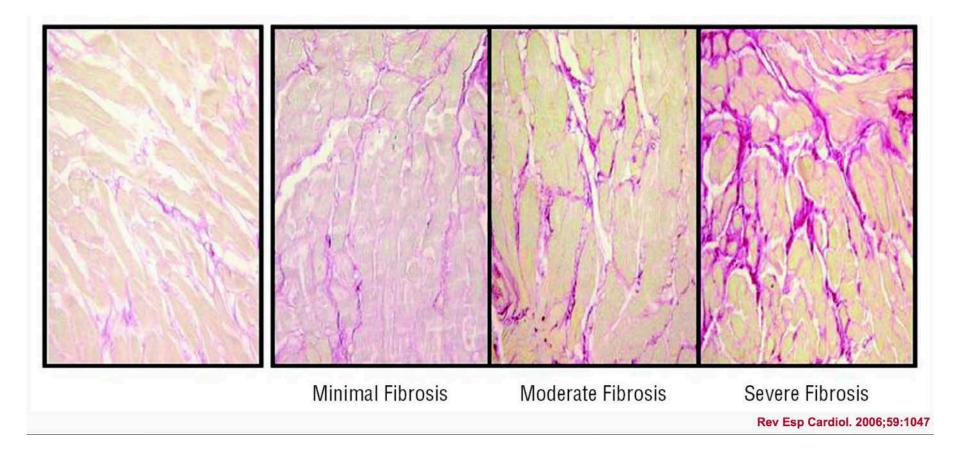

Sample to Insight

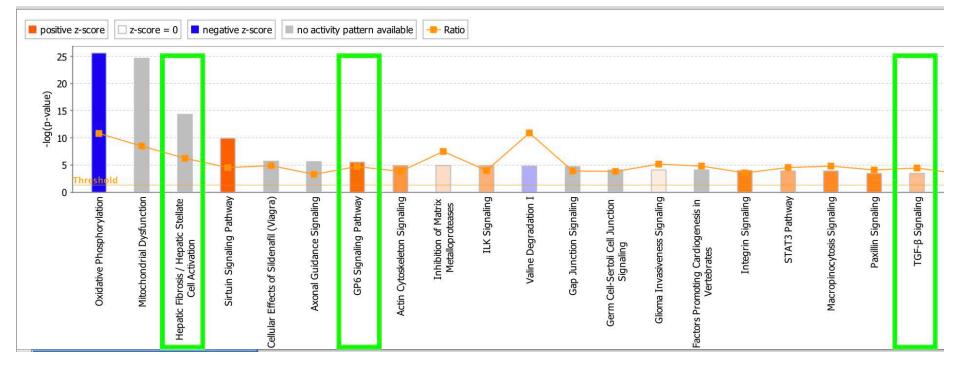
Analyzing heart development and heart disease datasets with OmicSoft and IPA bioinformatics solution.



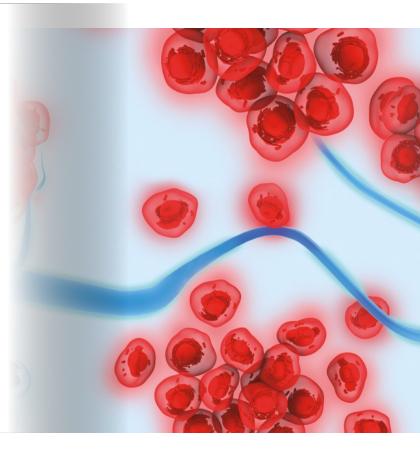


Oxidative phosphorylation (expression)



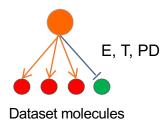


www.shutterstock.com • 209147719



Explore the underlying transcriptional programs

Upstream Analysis



Sample to Insight

Network types in IPA

Upstream regulator

Sample to Insight

ummary \ C	Canonical Pat	hways`Upst	ream Analysi:	s \ Diseases &	& Functions \setminus	Regulator Effe	ects \ Networ	ks \ Lists \ My	Pathways \ N	Molecules \ Ar	nalysis Match	/			
pstream R	egulators C	ausal Networ	·ks \												
D TO MY P	ATHWAY AD	D TO MY LIST	a							Act	tivation z-sc.	. 8.302 - 3.	491 (p1 of 19)	- 🖾 🕟	More
										+ Add/Remo	ve column(s)	Relationship	os Betwe 🛨		
a 🔻 🗙			Par 🝸 🗶		Predic 🗵	V V X	p 🝸 🗙	Net 🍸 🗶			Targe 🗵		De 🝸 🗵		
GFB1	† 0.806	A strength of the state of the state	+Tall 1		Activated	8.302	3.14E-25	1.00E-04	•all 202	202 (1)	1	3all 46			
MA1		peptidase	CEall 8		Activated	8.143	2.88E-25	2.00E-04	•all 210	210 (8)	8	Mcall 1	EGall 4		
MG2		other	↑ Fall 5	3	Activated	8.122	9.80E-26	1.00E-04	•all 204	204 (5)	3				
oteoglyca		chemical	prall 3	2	Activated	8.082	2.17E-25	1.00E-04	•all 206	206 (3)	2	↑Call 5	TGall 1		
G	↓ -0.735	transporter	Aktall 12	2	Activated	7.493	6.51E-28	3.00E-04	tall 248	248 (12)	12	beall 7	diall 1		
eomycin		chemical	Aktall 14	2	Activated	6.936	6.56E-31	1.00E-04	kall 330	330 (14)	14				
CR2		G-protein	Aall 15	2	Activated	6.731	2.73E-27	1.00E-04	tall 248	248 (15)	15	ball 12	BMall 9		
alondialde		chemical t	ABall 7	2	Activated	6.634	7.67E-27	5.10E-03	•all 311	311 (7)	7	2all 15	aall 20		
DAC3		transcripti	Aktall 15	2	Activated	6.234	2.20E-27	1.00E-04	all 273	273 (15)	15	cloall 9	Dall 4		
036		transmem	Aktall 22	2	Activated	6.082	1.37E-25	4.00E-04	all 265	265 (22)	22	3all 24	aall 12		
BB3		kinase	Aktall 27	2	Activated	5.977	2.39E-24	1.70E-03	tall 258	258 (27)	27	Aall 15	ball 10		
CR2		G-protein	2all 81	3	Activated	5.597	2.68E-27	1.00E-04	all 437	437 (81)	81	ball 12	BMall 9		
NF111		enzyme	+Ball 7	2	Activated	5.522	4.12E-20	1.00E-04	+all 82	82 (7)	7	↑ Tall 1	+Ball 1		
CTOR		other	RIall 1	1	Activated	5.485	3.47E-09	3.00E-04	+all 48	48 (1)	1	aall 8	soall 1		
SM2		enzyme	Aall 23	2	Activated	5.458	1.74E-21	4.40E-02	all 260	260 (23)	23	ball 14	Alall 9		
<		kinase	Aktall 36	2	Activated	5.272	2.34E-21	2.68E-02	all 285	285 (36)	36	+all 12	FSH,all 9		
FGF	† 3.388	growth fac	Call 20	2	Activated	5.164	1.77E-29	1.00E-04	all 297	297 (20)	20	Aall 57	8all 53		
FBP2		other	Akt,all 7	2	Activated	5.156	1.43E-19	1.55E-02	Fall 206	206 (7)	7	aall 13	Alall 8		
eomycin	1	chemical	blall 1	1	Activated	5.032	1.50E-13	1.00E-04	↑all 43	43 (1)	1				
FORC2		complex	Aktall 12	2	Activated	5.000	1.18E-17	2.20E-03	all 144	144 (12)	12	aall 7	CCall 6		
GFB3	† 1.280	growth fac	↑Tall 1	1	Activated	4.950	2.21E-12	1.00E-04	tall 32	32 (1)	1	aall 39	8all 23		
EU3	† 0.852	enzyme	Akt,all 8	1	Activated	4.934	3.95E-20	5.00E-04	•all 143	143 (8)	8				
PRA		phosphat	Eall 11	2	Activated	4.889	1.38E-17	7.00E-04	+all 122	122 (11)	10		calall 3		
ANCR		other	all 107		Activated	4.822	3.64E-22	2.60E-03	all 511	511 (107)	107				
ogossypc		chemical r	Aktall 90	3	Activated	4.624	5.61E-19	2.65E-02	all 477	477 (90)	89	6			
IM		enzyme	LDall 5	2	Activated	4.523	2.23E-11	6.00E-04	↑all 44	44 (5)	5	· · · · · · · · · · · · · · · · · · ·	TPall 1		
NF217		transcripti	ATMall 7	3	Activated	4.400	4.17E-13	9.10E-03	all 100	100 (7)	7		beall 2		
SPG2	† 0.936	enzyme	↑all 2		Activated	and the second second second	4.74E-12	I Searchise and a constraint	+all 81	Search Strategy in	2	AGT,all 7	COall 3		
NPP1	1	enzyme	Alp,all 4		Activated	a second s	1.10E-09	1. Content (44 October 1997) 197	+all 39		192	CTall 8			

TGF-B Regulates Fibrosis

Format: Abstract -

Send to -

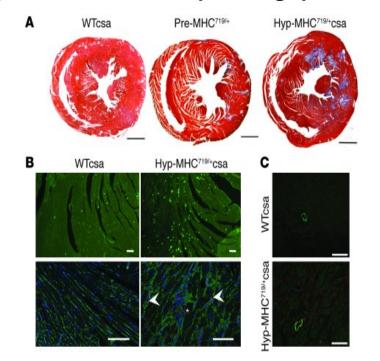
Nat Rev Nephrol. 2016 Jun;12(6):325-38. doi: 10.1038/nmeph.2016.48. Epub 2016 Apr 25.

TGF-β: the master regulator of fibrosis.

Meng XM¹, Nikolic-Paterson DJ², Lan HY³.

Author information

Abstract


Transforming growth factor- β (TGF- β) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease (CKD). Inhibition of the TGF- β isoform, TGF- β 1, or its downstream signalling pathways substantially limits renal fibrosis in a wide range of disease models whereas overexpression of TGF- β 1 induces renal fibrosis. TGF- β 1 can induce renal fibrosis via activation of both canonical (Smad-based) and non-canonical (non-Smad-based) signalling pathways, which result in activation of myofibroblasts, excessive production of extracellular matrix (ECM) and inhibition of ECM degradation. The role of Smad proteins in the regulation of fibrosis is complex, with competing profibrotic and antifibrotic actions (including in the regulation of mesenchymal transitioning), and with complex interplay between TGF- β /Smads and other signalling pathways. Studies over the past 5 years have identified additional mechanisms that regulate the action of TGF- β 1/Smad signalling in fibrosis, including short and long noncoding RNA molecules and epigenetic modifications of DNA and histone proteins. Although direct targeting of TGF- β 1 is unlikely to yield a viable antifibrotic therapy due to the involvement of TGF- β 1 in other processes, greater understanding of the various pathways by which TGF- β 1 controls fibrosis has identified alternative targets for the development of novel therapeutics to halt this most damaging process in CKD.

PMID: 27108839 DOI: <u>10.1038/nrneph.2016.48</u> [Indexed for MEDLINE]

F 🎿 👫

Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β

J Clin Invest DOI: 10.1172/JCI42028

REVIEW

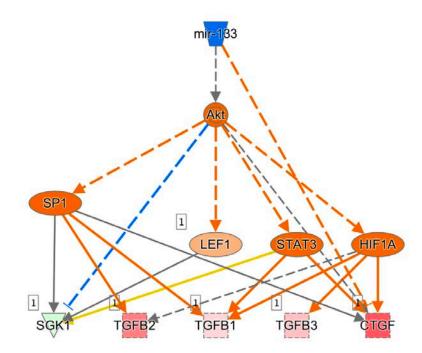
Role of microRNAs in cardiac hypertrophy, myocardial

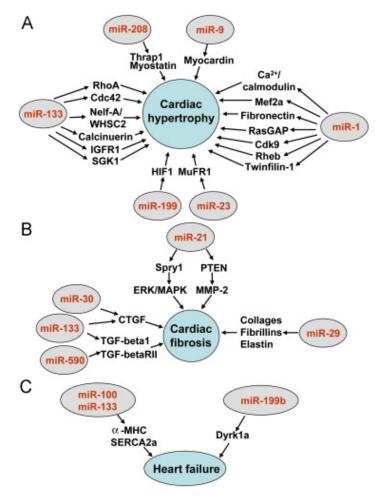
fibrosis and heart failure 🕁

De-li Dong ⊠, Bao-feng Yang ^央 ⊠

∃ Show more

https://doi.org/10.1016/j.apsb.2011.04.010 Under a Creative Commons <u>license</u> MiR-133 has a critical role in determining cardiomyocyte hypertrophy; its overexpression inhibits hypertrophy whereas its suppression induces hypertrophy both *in vitro* and *in vivo*¹⁰. Recently, Dong et al.²⁷ found miR-133 expression was down-regulated, and calcineurin activity enhanced in both *in vivo* and *in vitro* models of cardiac hypertrophy²⁷. In addition, they found that using cyclosporine A to inhibit calcineurin prevented the down-regulation of miR-133 in cardiac hypertrophy. These results indicate that miR-133 and calcineurin are reciprocally repressed in cardiac hypertrophy. Moreover, another study indicated that miR-133 a plays a role in diabetes-induced cardiomyocyte

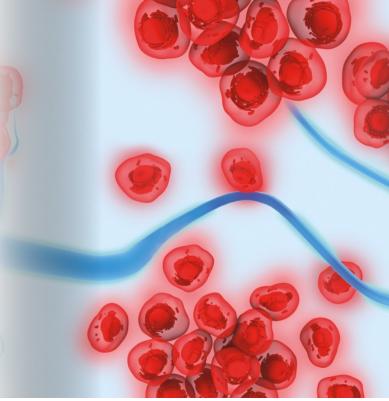

nhibition of mouse r	niR-133a mature microRNA(s) by antagomir increases hypertrophy of heart in mouse.
19889204	Meola N, Gennarino VA, Banfi S. microRNAs and genetic diseases. Pathogenetics. 2009 Nov 04;2(1):7. Epub 2009 Nov 4.
Source: Ingenuity Expe	rt Findings
Inhibition of miR-133	a [product of MIRN133A] mature microRNA(s) by antagomir increases hypertrophy of heart in adult animal.
21420033	Dorn GW. MicroRNAs in cardiac disease. Transl Res. 2011 Apr;157(4):226-35. Epub 2011 Jan 22.
Source: Ingenuity Expe	rt Findings
n cardiomyocytes from	animal, Mir133a [MIRN133A] mature microRNA(s) causes little or no change in reactive hypertrophy of heart in animal that involves pressure overload of heart.
22926414	Wang J, Yang X. The function of miRNA in cardiac hypertrophy. Cell Mol Life Sci. 2012 Nov;69(21):3561-70. Epub 2012 Aug 25.
Source: Ingenuity Expe	rt Findings
n cardiomyocytes from	animal, Mir133a [MIRN133A] mature microRNA(s) causes little or no change in reactive hypertrophy of heart in animal that involves isoproterenol.
	Wang J, Yang X. The function of miRNA in cardiac hypertrophy. Cell Mol Life Sci. 2012 Nov;69(21):3561-70. Epub 2012 Aug 25.



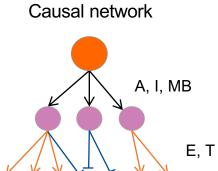
Upstream Regulators \ Ca	usal Networks \						
ADD TO MY PATHWAY ADD	TO MY LIST DISPLAY AS NE	TWORK CUSTOMIZE TABLE	MECHANISTIC NETWORKS	3 📑 💌			i More In
Upstream Regula 🕱 🗵	Expr Fold Change 🔳 🗵	Molecule Type	Predicted Activation 🗵	Activation z-score	∧ p-value of overl 🗵	Target molecules 🝸 🙁	Mechanistic Network
mir-133		microRNA	Inhibited	-2.219	1.86E-07	↑CTGF, ↑FN1, ▶all 15	325 (7)
mir-29		microRNA	Inhibited	-2.006	5.25E-07	✦AOX1, ✦AR, ✦all 19	597 (20)
MIR17HG		other		0.000	1.89E-06	★ACTA2, ★BMall 25	
miR-199a-5p (and other		mature microRNA	Inhibited	-3.494	3.56E-05	↑ACTG2, ↑BGN,all 16	
miR-320b (and other mil		mature microRNA		-1.007	3.88E-05	↑AQP1, ↓AQP4, tall 5	
miR-29b-3p (and other)		mature microRNA	Inhibited	-3.011	4.54E-05	↑COL1A1, ↑Call 15	
miR-1-3p (and other mil		mature microRNA	Inhibited	-4.218	1.89E-04	↑AGRN, ↑AXL,all 29	
mir-320		microRNA		0.109	3.81E-04	↑AQP1, +AQP4, tall 4	
miR-124-3p (and other		mature microRNA		-0.717	6.78E-04	+ACAA2, +BDNF, all 31	
miR-199a-3p (and other		mature microRNA		-1.664	9.34E-04	↑CD44, ↑FN1, ↑all 6	388 (7)
mir-34		microRNA		-0.863	1.36E-03	↓ AR, ↑ AXL, ↑ Ball 11	487 (21)
miR-155-5p (miRNAs w/		mature microRNA		-0.922	1.68E-03	↑CCND1, ↑CSFall 23	357 (7)
mir-221		microRNA		-0.090	1.80E-03	◆DIRAS3, ◆KIT, ▶all 6	
miR-145-5p (and other		mature microRNA	Inhibited	-3.277	2.91E-03	↑ACTA2, ↑ACall 11	414 (7)
mir-154		microRNA		-0.523	3.37E-03	↑AXL, ↑BCL2, ↑all 5	
miR-133a-3p (and other		mature microRNA		-0.656	3.46E-03	♦ CPNE3, ↑ CTGF,all 10	
miR-382-5p (miRNAs w		mature microRNA			3.50E-03	↑CNTN4, ↑TAGLNall 3	
miR-16-5p (and other m		mature microRNA		-0.866	4.07E-03	↓ABHD10, ↑Aall 26	1

QIAGEN

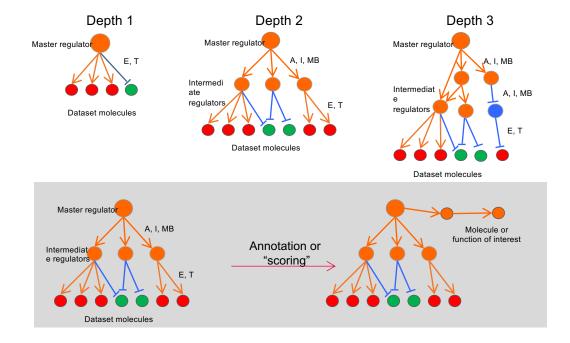
Mir-133 Role in HCM



Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure $\underline{\star}$ Author links open overlay panel De-liDongBao-fengYang


Generate hypotheses to validate in the lab

Causal Network


Sample to Insight

Sample to Insight

Sample to Insight

Summary $\setminus 0$	Canonical Pat	hways Upst	ream Analysi	s \ Diseases d	& Functions \	Regulator Effe	ects \ Network	<s \="" lists="" my<="" th=""><th>Pathways \ N</th><th>Allolecules \ Al</th><th>nalysis Match</th><th>1</th><th></th><th></th><th></th></s>	Pathways \ N	Allolecules \ Al	nalysis Match	1			
Upstream R	egulators C	ausal Netwo	rks \												
ADD:TTO MY: P	ATHWAY 383	D TO MY HIST								Ac	tivation z-sc	8.302 - 3.	491 (p1 of 19)) 🔻 🖂 🔊	More In
												-			
	-										ve column(s)				
Ma 🝸 🗙 TGFB1	Ex ▼ ×		↑Tall 1		Predic 🗵 Activated	8.302	p 🝸 🙁 3.14E-25	Net T X	1ar 1 A	202 (1)	Targe 🗵	3all 46			
CMA1			CEall 8	1	Activated	0	2.88E-25	2.00E-04	all 210	210 (8)	8	Mcall 1	and the state of t		
SEMG2		other	↑Fall 5	1.00	Activated	8.122	9.80E-26	1.00E-04	tall 204		3		L'United at the second s		
proteoglyca		Construction of the second	prall 3		Activated	8.082	2.17E-25	1.00E-04	all 206	206 (3)	2	+Call 5	TGall 1		
BSG	↓ -0.735		Aktall 12	1.1.1	Activated	7.493	6.51E-28	3.00E-04	all 248	Concernance of the Party	12	beall 7			
oleomycin		collonge considered	Aktall 14	1.1	Activated	6.936	6.56E-31	1.00E-04	all 330	330 (14)	14				
CCR2			Aall 15	4.23	Activated	6.731	2.73E-27	1.00E-04	1all 248	and an internet state of the	15	ball 12	BMall 9		
malondialde			ABall 7	100	Activated	6.634	7.67E-27	5.10E-03	all 311	311 (7)	7	2all 15			
HDAC3			Aktall 15	1	Activated	6.234	2.20E-27	1.00E-04	all 273	I	15	cloall 9	1		
D36			Aktall 22	1	Activated	6.082	1.37E-25	4.00E-04	all 265		22	3all 24			
RBB3		kinase	Aktall 27		Activated		2.39E-24	1.70E-03	all 258		27	Aall 15	ball 10		
CCR2		G-protein	2all 81	3	Activated	5.597	2.68E-27	1.00E-04	all 437	437 (81)	81	ball 12	BMall 9		
RNF111		enzyme	+Ball 7	2	Activated	5.522	4.12E-20	1.00E-04	+all 82	82 (7)	7	↑Tall 1			
RICTOR		other	RIall 1	1	Activated	5.485	3.47E-09	3.00E-04	4all 48	48 (1)	1	aall 8	soall 1		
GM2		enzyme	Aall 23	2	Activated	5.458	1.74E-21	4.40E-02	all 260	260 (23)	23	ball 14	Alall 9		
LK		kinase	Aktall 36	2	Activated	5.272	2.34E-21	2.68E-02	all 285	285 (36)	36	+all 12	FSH,all 9		
TGF	† 3.388	growth fac	Call 20	2	Activated	5.164	1.77E-29	1.00E-04	all 297	297 (20)	20	Aall 57	8all 53		
GFBP2		other	Akt,all 7	2	Activated	5.156	1.43E-19	1.55E-02	•all 206	206 (7)	7	aall 13	Alall 8		
oleomycin		chemical	blall 1	1	Activated	5.032	1.50E-13	1.00E-04	† all 43	43 (1)	1				
ATORC2		complex	Aktall 12	2	Activated	5.000	1.18E-17	2.20E-03	all 144	144 (12)	12	aall 7	CCall 6		
rgfb3	† 1.280	growth fac	↑ Tall 1	1	Activated	4.950	2.21E-12	1.00E-04	+all 32	32 (1)	1	aall 39	8all 23		
NEU3	† 0.852	enzyme	Akt,all 8	2	Activated	4.934	3.95E-20	5.00E-04	all 143	143 (8)	8				
PTPRA		phosphat	Eall 11	2	Activated	4.889	1.38E-17	7.00E-04	all 122	122 (11)	10		calall 3		
BANCR		other	all 107	3	Activated	4.822	3.64E-22	2.60E-03	all 511	511 (107)	107				
pogossypc		chemical r	Aktall 90	3	Activated	4.624	5.61E-19	2.65E-02	all 477	477 (90)	89				
RLIM		enzyme	LDall 5	2	Activated	4.523	2.23E-11	6.00E-04	↑all 44	44 (5)	5		TPall 1		
ZNF217		transcripti	ATMall 7	3	Activated	4.400	4.17E-13	9.10E-03	•all 100	100 (7)	7		beall 2		
HSPG2	† 0.936	enzyme	↑all 2	2	Activated	4.333	4.74E-12	3.90E-03	↑all 81	81 (2)	2	AGT,all 7	COall 3		
ENPP1		enzyme	Alp,all 4	2	Activated	4.323	1.10E-09	7.00E-04	+all 39	39 (4)	3	CTall 8	CAall 2		

Research Article Cardiology Free access | 10.1172/JCI43008

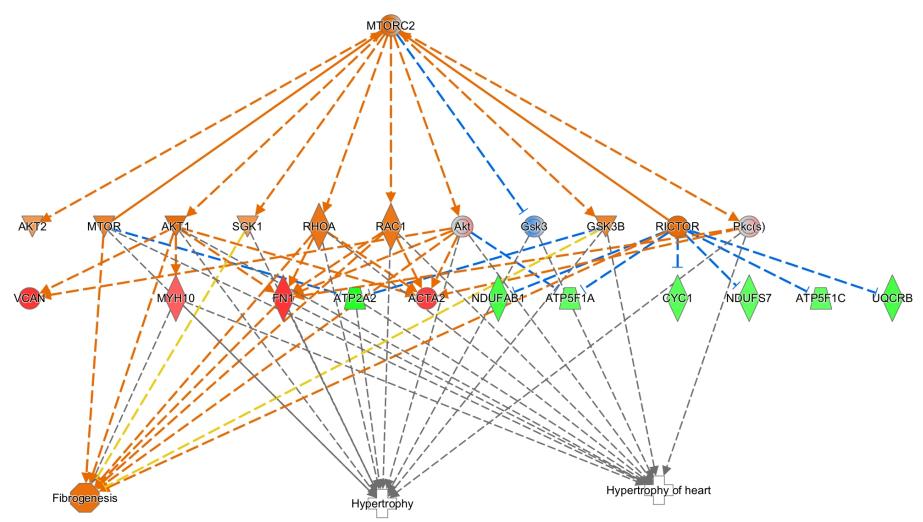
MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice

Denghong Zhang,¹ Riccardo Contu,² Michael V.G. Latronico,² Jianlin Zhang,¹ Roberto Rizzi,^{2,3} Daniele Catalucci,^{2,3} Shigeki Miyamoto,⁴ Katherine Huang,⁴

Marcello Ceci,⁵ Yusu Gu,¹ Nancy D. Dalton,¹ Kirk L. Peterson ¹ Kun-Linns Guan ⁴

Joan Heller Brown,⁴ Ju Chen,¹ Nahum Sonenberg,⁶ a

First published July 19, 2010 - More info


Abstract 15113: Inhibition of Mtor With Rapamycin Reverses Cardiomyocyte-Specific Knockout of Pten-Induced Hypertrophic Cardiomyopathy

Xihui Xu, Nathan D Roe, Mary C Weiser-Evans, and Jun Ren

Originally published 27 Mar 2018 Circulation. 2018;128:A15113

MTORC2 1

© 2000-2019 QIAGEN. All rights reserved.

How can you discover which analyses look like yours, to uncover insights from mechanistic similarities and differences?

xpression /	Analysis -	Mouse expre	ssion RNA-s	eq High Insulin v	s untreated	4 FDR0.01		ರ್ ಡೆ	X		
		a successive second second		Diseases & Fund	ctions \ Regu	ulator Effects \ List	s \ My Pathways	\Molecules \Analysis Match	1		CONTRACTOR AND
Upstream R	Legulators	Causal Netwo	rks								
ABD TO ME P	ATHWAY	DO TO NY LIST	a 📭	A	ctivation z-s	ic 6.067 - 3.80	3 (p1 of 29)	- 🖾 🛄 🔟 More In	fo		The first first of the second
								+ Add/Remov	-		100 / how 1000 / - 0/1 - 100 100 100 100 1000
Maste 🝸	Ex 🐨 🤉	Mol 🝸 🗵	Par T ×	De T X Prec	ic 8 🗸		8 Net 7				And the set of the set
CEBPD	+2.253	transcripti	Call 6	2 Activ			CALL DECOMPLYING	all 235 235 (6)	6	Match analigat	And the first of the second se
INSR	4-1.812	kinase	+all 1	1 Activ	ated 5.9	08 1.39E-1	7 1.00E-04	Fall 66 (1)	1	Match against	1000 [com / 1000 [1000] 100 [1000
1D-chiro-ir		chemical	1all 3	2 Activ				Fall 75 (75 (3)	2		And The Part All In Call the State
benzylamin		chemical	ball 4	2 Activ				*all 75 75 (4)	3		And the part of the second sec
HPSE		enzyme	Eall 8	2 Activ			2 8.90E-03	all 206 206 (8)	8		A THE FOR AN AND A DESCRIPTION OF A DESC
UBA1	† 2.339	enzyme	all 61	3 Activ	the state of the s			all \$45 545 (61)	5		And the first of the second se
ciglitazone		chemical	+all 24	2 Activ	ated 5.5	90 1.41E-3	7 1.00E-04	all 320 320 (24)	2		And the set of the set
LPIN1	† 2.062	phosphat	+all 7	2 Activ	ated 5.5	75 7.09E-3	0 1.00E-04	all 181 181 (7)		52,000 analyses	for the part of the second second
D-thioctic a		chemical	Aall 4	2 Activ	ated 5.4	80 1.04E-2	2 1.00E-04	all 112 112 (4)	•	JZ,000 analyses	And for a first the second sec
hexarelin		chemical t	Aall 6	2 Activ	ated 5.4	26 8.10E-3	2 1.00E-04	all 181 181 (6)	5		And the proof of the second se
mibolerone		chemical	all 31	3 Activ	ated \$.3	53 2.98E-4	1 6.00E-04	all 554 (554 (31)	3		The face first and a second se
hydroxyfluta		chemical	all 35	3 Activ	ated 5.3	45 1.57E-3	8 1.70E-03	all 547 (35)	3		And the Arrive for the second
testosterone		chemical	all 39	3 Activ	ated 5.2	50 3.22E-3	9 1.10E-03	all \$49 549 (39)	3		And the set of the set
1.1-bis(3'-		chemical r	1all 3	2 Activ	ated 5.1	85 2.05E-2	9 1.00E-04	all 162 162 (3)	3		Manual Survey Articles
ZMIZ2	† 1.861	transcripti	all 31	3 Activ	ated S.1	84 8.28E-3	7 2.70E-03	all 527 527 (31)	3		And the part of the second sec
	1	1		le le ce			- hans of	1			And the set of the set
Selected/T	otal rous : I	1 / 2833					101		Total Contraction		And the second s
Sancted/1	VART LOWS : 1										And the first of an in the second second

Which analyses have similar Upstream Regulators, Canonical Pathways, Diseases and Functions, etc.?

Sample to Insight

Compare your analysis with *your other analyses* as well as analyses of datasets from *public domain* (TCGA, SRA, GEO, LINCS, etc.)

Mechanism of action

Is there a shared biology across your samples?

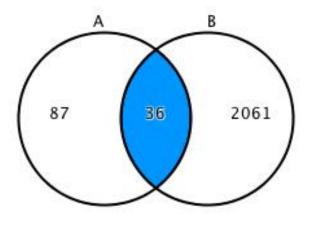
Target discovery/validation

 What key regulators/pathways are similarly activated or inhibited across the groups?

Biomarker discovery through comparison analysis

Generate gene expression heatmap specific to cellular/molecular processes

Summary Canonical Pathways Upstream Analysis Diseases & Functions Regulator Effects Networks Lists My Pathways Molecules Analysis Match																
VIEW AS HEATMAP VIEW COMPARISON	CUSTOMIZE TABI		•						z-	score over	all 100.	0 - 33.51	(p1 of 20	0) 🗸] 🖾 🕟	1 More Info
Analysis Name 🔽 Proj.		× (T X T X	🝸 🗙	🝸 🛛	🝸 🗙	🝸 🗙	🝸 🗵	T X	T X	V 🛛 🗙	🝸 🗙	🝸 🗙	🝸 🗙	💌 🗙	T X
HCM vs. Normal heart GWB Jennif	er P						100.00	100.00	100.00	100.00	100.00	3.92E	1.62E	5E-249	8.22E	89.20 🔺
HCM vs. Normal heart 2018-09HCM_	GWB	J					100.00	100.00	100.00	100.00	100.00	3.92E	1.62E	5E-249	8.22E	89.20
lgm_hcm_vs_norm_omicsoft hyper	troph						90.14	88.32	75.50	78.51	83.12	9.6E-19	1.08E	1.2E-98	1.66E-88	84.01
lgm_hcm_vs_norm_omicsoft Jennif	er P						90.14	88.32	75.50	78.51	83.12	9.6E-19	1.08E	1.2E-98	1.66E-88	84.01
GSE89714.hypertorphic_expresLand.	Com						75.00	84.85	64.81	70.22	73.72	1.33E	1.17E	1.76E	8.1E-67	79.94
lgm_hcm_vs_NH.DESeq2_relaxe hyper	troph						75.00	82.46	57.45	72.15	71.76	1.83E	4.74E	4E-45	7.33E-69	76.57
GSE89714_fc_1.7_fdr05 Land.	Com						55.90	82.46	62.45	80.24	70.26	4.79E	4.74E	3.91E	1.38E-95	77.16
1- hypertrophic cardiomyopath Huma	nDis hyper	r	heart	Disease	Disease	https://	50.00	81.24	66.33	52.34	62.48	9.7E-05	5.99E	7.77E	1E-38	71.01
2- dilated cardiomyopathy [hea Mouse	eDise dilated		heart v	Disease	Clinical	http://	66.14	67.82	34.64	45.33	53.48	7.58E	2.54E-59	4.8E-11	1.44E-20	43.14
5- normal control [small intestin Mouse	eDise norma	L	small in	Treatm	TissueR	https://	50.00	60.00	43.59	54.90	52.12	1.6E-03	6.23E-41	7.46E	6.52E-31	46.66
2- normal control [embryo] rosi Mouse	eDise norma	l	embryo	Treatm	Treatm	http://	50.00	64.81	36.06	53.63	51.12	8.79E	1.15E-51	2.49E	1.11E-31	47.81
1- liver cirrhosis [liver] NA 329 RatDi	sease liver c	r	liver	CellTyp	Disease	https://	55.90	59.16	40.00	43.79	49.71	4.91E	3.12E-39	1.99E	2.53E-17	37.06
17- normal control [spinal cord Mouse	eDise norma	i j	spinal c	Tissue 1	Tissue	https://	55.90	51.96	35.78	54.90	49.63	4.79E	1.45E-26	2.14E	1.24E-29	40.37
4- normal control [fetal brain] r Mouse	eDise norma	l	fetal br	Treatm	Treatm	http://	50.00	51.12	40.00	56.13	49.31	8.79E	4.07E-31	1.99E	3.53E-33	40.80
lgm_hcm_vs_NH.DESeq2_strict hyper	troph							70.71	60.00	65.17	48.97	1.93E	2.19E-67	5.14E	1.63E-55	75.86
3- lung adenocarcinoma (LUAD)Onco	GEO lung a	1t	lung	Treatm	TreatTi	http://	61.24	53.85	31.62	46.82	48.38	3.46E	1.42E-29	1.3E-08	1.05E-21	31.09
2- normal control [liver] NA 33(RatDi	sease norma	l	liver	CellTyp	Disease	https://	61.24	51.96	37.42	40.54	47.79	3.46E	1.45E-26	1.18E	9.99E-15	28.62
HCM vs. Normal heart - 2018- Demo	0		heart					64.03	61.64	65.17	47.71	1.53E	8.2E-50	4.54E	1.63E-55	75.95
1- normal control [epididymal v Mouse	eDise norma	l	epididy	CellTyp	Tissue:	https://	55.90	57.45	33.17	43.79	47.58	1.52E	6.58E-36	8.35E	6.09E-17	32.15
2- normal control [vastus latera Huma	nDis norma	1	vastus I	Treatm	Subject	https://	61.24	48.99	34.64	45.33	47.55	1.18E	2.91E-22	4.8E-11	6.84E-19	27.47
14045- prostate adenocarcinor LINCS	prosta	t PI3K	prostate	Treatm	Treatm	https://	50.00	44.72	37.42	53.63	46.44	2.66E	6.16E-17	1.18E	1.38E-28	29.79
1- atrial fibrillation [myocardiun Huma	nDis atrial	i	myocar	Disease	Disease	http://	50.00	66.33	41.23	26.17	45.93	6.23E	1.92E-55	7.22E	1.08E-06	38.16
7- amyotrophic lateral sclerosis Mous	eDise amyot	·	lumbar	Disease	Disease	http://	50.00	52.92	26.46	52.34	45.43	6.23E	4.68E-28	2.38E	5.3E-26	30.22
1- interstitial lung disease (ILD) Huma	nDis interst	it	skin	Disease	Disease	http://	50.00	52.92	36.06	42.20	45.29	6.23E	4.68E-28	2.49E	1.41E-16	28.99
1- skin melanoma (SKCM) [skin]Metas	static skin m	e	skin	Disease	Experi	https://	50.00	50.00	38.73	42.20	45.23	1.7E-04	1.14E-23	5.06E	2.88E-16	28.27
63- pancreas adenocarcinoma TCGA	pancr		pancreas	Other C	CHEK2	https://	66.14	30.51	33.17	49.66	44.87	4.51E	4.69E-10	8.35E	1.42E-25	25.30


 Entity Type 	Entity Name	In HCM vs. Normal	🔐 1- hypertrophic c	🖽 2- dilated cardio
UR	TGFB1			
CN	TGFB1			
	bleomvcin			
DE	Organismal death			
DE	Morbidity or mortality			_
CN	MAP4K4	<u>.</u>		
CN	TRPS1			<u></u>
CN		galan and the second se		
CN				
	SEMG2			
-	proteoglycan			-
СР	Oxidative Phosphorylation			
UR	bleomycin	8		
CN	Alpha catenin			
CN	BSG	-		
	Alpha catenin			
UR	MAP4K4			<u> </u>
UR	SMAD7			
	rosiglitazone			
UR	CTNNB1	-		
CN	SMAD7			
CN		4		
CN		1		2
CN	thioacetamide	4		

<u> </u>		
CN	SPDEF	
CN	thioacetamide	
	argatroban	
	MTPN	
CN	FAS	
UR	MTPN	
DE	Size of body	
UR	thioacetamide	
UR	GLI1	
IIR	doxorubicin	
	Tgf beta	
	INSR	
UR	TGFB3	
	FAS	
	GP6 Signaling Pathway	
	bivalirudin	
	RICTOR	
	CIGF	
UR		
1000000	KDM5A	
UR	fenofibrate	
	SP1	
UR	CR1L	
DE	Homing of cells	
UR	Cg	

Entities Comparison

- A 2018-Sep-12:06:42:26-HCM no control-Predicted Deleterious (Dataset)
- B lgm_hcm_vs_NH.DESeq2_relaxed (Analysis)

Molecule Name	Molecule Name
ADSSL1	LRP1
AHNAK	MPC2
ARL6IP5	MYH7
CALCOCO2	MYOZ2
CHCHD10	NDRG1
CHPT1	NDRG4
DCTN1	NDUFB4
ECH1	NDUFB5
ETFB	NEBL
FAM129A	OCIAD1
FLNA	PGAM2
FN1	PRELP
GOT2	RPL3L
HSD17B4	RTN4
IGFBP7	TNNT2
KTN1	TRDN
LAMA2	VCAN
LARP7	WEE1

© 2000-2018 QIAGEN. All rights reserved.

Secondary analysis

Data quality and samples were mostly consistent

Variant annotation and analysis in IVA

- Variants found in typical HCM Genes and many in the MT
- IPA analysis of Variants Supports a decrease in Oxidative Phosphorylation and and increase of Surtuin Pathway suggesting a lack of energy for cardiomyocytes

IPA analysis of the expression data

- Echoes the decrease in Oxidative Phosphorylation and and increase of Surtuin Pathway suggesting a lack of energy for cardiomyocytes
- Suggests an increase of Fibrosis
- Upstream Regulators support this with an increase in TGF-B
- Specific HCM regulators support increase in hypertrophy MTOR and Mir-133
- Disease and function show and increase in fibrosis and cellular movement
- Analysis Match helps support the same finding in other Cardiomyopathy studies